
Artificial Intelligence Design in a
Multiplayer Online Role Playing Game

Christopher A Ballinger, David A Turner and Arturo I Concepcion
School of Computer Science and Engineering
California State University San Bernardino

San Bernardino, CA 92407
ballingc@coyote.csusb.edu, dturner@csusb.edu, concep@csusb.edu

909-537-5326

Abstract
In this paper, we describe our experiences and lessons
learned utilizing a rule-based system for implementing
the AI in a multi-player online role playing game called
Mythic. We explain how we organize AI rules, how those
rules are assembled from a database, how sets of rules
are assigned to game entities, the different sets of
inference rules, the different phases of inference rules,
and how we manage facts used by the inference engine.
We also review some of the history behind the Mythic
project, where it is headed, what a rule-based system is
and why we chose to use one for our project. The result of
our project is a design that allows us to have diverse AI
behavior and flexibility to reuse code to create new
behaviors, but may prove to be inefficient if implemented
on systems with a large number of players or many AI
controlled game entities.

Key Words: artificial intelligence, games, knowledge
engineering, rule-based systems

1. Introduction

Mythic is an active project focused on the development
of all aspects of a multi-player online role playing game
(MORPG). The goal of Mythic is to develop a system
with the capacity to offer similar capabilities as current
MORPG games available on the market, as well as
providing new innovative features to distinguish it from
other MORPG games and make it attractive to potential
players. We also showcase this project to high school
students who are interested in developing games, and
invite them to contribute to any of the components of the
game as a way to further their interest in the subject. The
Mythic project has had a multitude of contributions from
many different students, and has gone through several
iterations since its inception. However, this paper will
focus on the artificial intelligence (AI) design and
progress from the summer 2009 iteration of the Mythic

project that was a part of a computer science masters
project done by Christopher Ballinger in the Department
of Computer Science and Engineering at California State
University, San Bernardino. The purpose of this paper is
to detail how we developed the AI for combat, movement,
items, spells and abilities in Mythic, and report on our
experiences in going through the process.

1.1. AI in games

Using a rule-based system(RBS) to develop game AI is
not a novel idea, and has been used in both academia and
in the gaming industry. In the past, RBS were more
commonly used for creating AI for board games, such as
tic-tac-toe[1], dots-and-boxes[2], checkers[3], and
chess[4]. However, the AI for these types of games differ
from more modern games in a few different ways. The AI
always has perfect knowledge: it knows where all of it’s
own pieces are, where all of it’s opponents pieces are, and
can determine all possible available moves for both
players for at least the next move, and usually possible
moves in future turns. In addition to this, the number of
rules for a game, number of actions available in each
game, and the number of physical spaces that actions can
occur on, are very limited when compared to more
modern genres of video games. For more modern genre’s,
such as First-Person Shooters(FPS) or MORPGs, this is
not the case. The AI in such games usually are not given
perfect knowledge(they cannot see an opponent hiding
behind a wall, and may not know any or all of the
weapons the opponent is carrying until it sees them used).
The AI also has to account for the innumerable actions
their opponent my have at their disposal, most of which
may be available at any given time. The board these
games are played on are comparatively vast, with nearly
limitless positions a player could be at or paths they could
follow. Finally, these types of games do not usually give
players turns, they are allowed to take as many actions as
they want as quickly as they want, while their opponent
simultaneously does the same.

Recently, modern games have started making use of
RBS with success as well. The Soar Quakebot (which uses
the Soar architecture to make AI for NPCs in the FPS
video game Quake II) has also experimented with using a
RBS to do NPC AI in a video game, reporting that the
behavior from the NPCs is intelligent and responsive[5],
and using more than 800 rules in order for them to do
so[6]. Retail games have also started to use RBS, such as
a previously unnamed game using a specially designed
RBS[7]. However, no professionally developed games
seem to use commercially available RBS such as Drools,
the RBS we selected to use in our project.

1.2. Organization of the paper

 The first section of this paper will give a brief overview
of the Mythic project’s development history, current
status, and future plans. The second section will explain
what a RBS is, what RBS we selected, and how we used
it. The third section describes the design of AI we
developed, the phase design for the AI, how rules are
represented in the database, how rules are organized, how
we manage facts used in evaluating rules. Finally, in our
conclusion, we discuss advantages of our design, possible
problems that may arise in the future and our future plans.

2. Mythic MORPG

Development on the Mythic project began in 2007, and
has undergone a few rewrites since that time. The two
biggest changes between these iterations were the
programming languages used to develop the game
(varying between Java, C++, and C#) and the graphics
engine (varying between Horde3D[8], OGRE[9], and two
different engines developed by students at CSUSB). We
considered Horde3D for our graphic engine because it is a
free, open source solution with impressive capabilities and
a growing community. We considered OGRE because,
like Horde3D, it is a free and open source solution with a
large community, and has been used to produce the
commercial game Torchlight. During this early
development period, the storyline and game play
mechanics started to become better defined as well.

Currently, the Mythic project is transitioning from the
OGRE graphics engine to the Unreal engine for both our
graphics and physics needs. We shifted to the Unreal
engine because we felt that while OGRE and Horde3D
were powerful tools, they were difficult to use and do not
come with content creation tools. Furthermore, while the
two engines developed at CSUSB showed a lot of
promise, they were in a stage of development that was too
early to be used. We feel that the Unreal engine will allow
us to produce a game with modern graphics with greater
ease. While there will be much for us to redo in the new

iteration, the Unreal engine gives us access to many
resources that allows us to set up a small online game out-
of-the-box. However, these resources were not meant to
be used for an MORPG style game, so our short-term goal
is to modify the code to allow for an MORPG style game,
with the expectation that when we accomplish this we will
be able to get a basic game running. In the long-term, after
we have a basic setup running, we hope to integrate some
of our old resources, such as the AI, to this new project,
and continue to develop features not yet fully
implemented such as instanced battlefields, combat
system and player interactions.

3. Rule-based systems

A RBS is comprised of an inference engine, production
memory and working memory, as shown in Figure 1. The
production memory is where all the rules are stored, while
the working memory is where all the facts are stored. A
rule is a collection of conditions and a collection of
statements called the consequences and follows shown in
Figure 2, while a fact is a piece of data that may be used
in the evaluation of a rule.

Figure 1. Expert system components

rule "name"
<attributes>
when

<conditions>
then

<statements>
end

Figure 2. Rule structure

An inference engine can be broken into two parts: the
pattern matcher and the agenda. Whenever a fact is added
to or removed from the working memory, the pattern
matcher checks all of the rules in the production memory
whose evaluation may change because of that fact. If all of
a rule’s conditions are met by the facts in working
memory, it is placed into the agenda. If one or more

conditions of a rule previously added to the agenda are no
longer met, it is removed from the agenda. When all rules
have been evaluated and no more changes to the working
memory have been made, the consequences of a rule on
the agenda will be executed. If this rule’s consequences
modify the working memory, then the rules in the
production memory are checked again and the rules on the
agenda are updated. As Figure 3 shows, this cycle
continues until there are no more rules on the agenda.

Figure 3. Agenda cycle

 We believe that a expert system provides us with the
best option for creating AI. Unlike a finite state machine,
which may cause behavior a player can easily predict and
would require a massive amount of state[6], a RBS would
make it easier to create behavior that is less predictable.
This is because the RBS selects the action(s) to take based
on the facts given to it, and the previous decision or action
it took does not have to factor into what it selects to do
next. It also makes the rules easier to write, since figuring
out an order in which they must occur is not necessary at
every step.

3.1. Drools

 We selected Drools[10] as the RBS in our project. The
reason we selected Drools over other RBS such as CLIPS
and JESS is primarily because it was a free, open source
solution and works seamlessly with our Java code, but
also because it is very well supported and has a very
active community. The pattern matching algorithm Drools
uses is a modified Rete algorithm called ReteOO, which is
optimized for object-oriented systems. The reason we
decided to use Drools for the AI portion of the project is
because Drools is a proven technology in other fields, and
we wish to see if its performance would be suitable for our
MORPG. We also saw the potential flexibility that it
would give our system and believed that to be an
important asset. Currently we only use Drools for deciding
what actions a non-player character (NPC) should take,
what dialog they should generate, and for the effects of

spells and abilities (something a player or NPC can select
to perform a special attack or to defend from an attack). In
order for a NPC to have access to AI capabilities, a
session must be created from a knowledge agent and
assigned to the NPC.

A session in Drools is an instance of production
memory, working memory and inference engine. An
instance of a session is created from a knowledge agent,
as shown in Figure 4. Instances of sessions created from
the same knowledge agent are totally independent of each
other, changes to the working memory or agenda of one
session do not affect the working memory or agenda of
another session. This allows us to have multiple NPC’s
with the same AI from the creation of one knowledge
agent.

Figure 4. Knowledge agent and session
creation process

A knowledge agent is basically a collection of rules
that is used to create a session. All knowledge agents are
created once when the system first starts, and entities
create their sessions from the agents after that. The
creation of the knowledge agent is a expensive process,
while creating an instance of a session from it is fairly
lightweight. A knowledge agent is created from one or
more rule files that contain various rules, as shown in
Figure 4. When multiple files are used to create a
knowledge agent, the agent will treat all of the rules as if
they were contained in one file. All knowledge agents are
also configured to check the files they are comprised of
for changes every 30 seconds. If any changes are detected,
the knowledge agent will rebuild itself with the updated
files and update all sessions created from it, allowing for
changes to AI behaviors on-the-fly.

4. AI design

The setting of Mythic is a fantasy medieval-type era,
where people strive to gain a better understanding of
magic instead of technology. There are three countries in
this world that have different views on magic. The
Kyrians are a people who rely solely on their physical

strength, believing that using magic could lead to
endangering the planet. The Sieric people are the opposite
of the Kyrians, believing that one’s value and position in
life should be based on their magical prowess, and are
always striving to increase their magic abilities. The
Nochi believe in a middle ground, that using magic in
moderation is safe, but using it to break the natural order
of things could be a great danger, thus magic use should
be strictly monitored. In addition to the conflicts between
these three cultures, another threat to all three nations
begins to stir, ancient god-like beings known as the
Mythic. These beings take on nightmarish figures and
attack people of all three lands. It is up to the player which
country they wish to ally themselves with, and help defend
it from the other nations while trying to learn what the
Mythic are and how to stop them. In a world set in
constant turmoil and battles, we need to design AI for
NPCs so they know how to successfully defeat foes, assist
allies, and react to players in accordance with how their
culture feels about the players culture. We also need AI
for spells and abilities that are capable of performing an
almost unlimited amount of different actions, as one
would expect from magic.

4.1. AI types

There are three different types of AI that we use Drools
for. The first type is the effects of spells and abilities.
When a player or NPC decides to use a spell, the only
decision that entity is making is what spell to use and the
intended target. The spell itself has it’s own AI that
determines if the spell is successful, how effective it is, if
any additional effects will take place, if other nearby
entities other than the target are affected, etc. When a
spell has successfully been cast, it’s effects are carried out
by adding new facts and/or modifying all the relevant
facts for all entities that are affected by the spell.

The second AI type is for dialog NPCs. This AI simply
consists of looking at various facts, and then assembles
dialog appropriate for the character talking to them based
on those facts. As an example, if a male character talks to
a NPC, the NPC might respond ”We don’t need a man for
this job.” while a female character who talks to the same
NPC might get the dialog ”Ah, about time a strong woman
showed up.” Dialog NPCs are also capable of giving
players quests to participate in (a series of tasks that the
player must accomplish). This is done by storing a fact in
the database for the player that signals what part of the
quest the player is on, so NPCs involved with the quest
will react to the player accordingly.

The third type of AI is for combat NPCs, demonstrated
in Figure 5. Combat NPCs require an AI that tells them
how to to intelligently attack or defend themselves from a
player or another NPC.

Figure 5: Two combat NPCs(left) following and
attacking a player (right)

4.2. AI sessions

Figure 6. Status and main session flows

Every entity has up to three AI sessions attached to
them. In our AI design we name these sessions the status
check session, main session and activate session. The
status check session and main session are used during the
update phase. The status check session runs first, it is as
small and efficient as possible and determines if the main
session is needed or not, as shown in Figure 6. The main
session is where the majority of decision making rules for
the entity are usually placed. The activate session is used
whenever the entity is selected or right-clicked by a
player. Any entity is capable of using any combination of
these sessions, including all or none of them.

4.2.1. Status check session. In this session, the AI checks
the status of the entity to see if a session for the main
session has to be created or not. Typically in this session

the entity checks if it is dead or alive, or to see if there are
any residual effects that must be carried out from a spell
that was previously performed on it that may affect its
main phase. If it is determined that the NPC cannot take
any further action, an instance of the main phase will not
be created and will be skipped.

4.2.2. Main session. The purpose of the main session
varies greatly depending on the type of NPC it is attached
to, but it is most commonly used for combat NPCs. When
dealing with combat NPCs, we split the rules into two
separate phases: the detection phase and the decision
phase.
 In the detection phase the NPC may try to see if it
currently has a target, and if so, check if that entity is still
a valid target. If the NPC’s previous target is no longer
valid, or if it did not have a valid target, it will attempt to
find the closest valid entity target within its detection area.
Regardless of whether the NPC has a target or not, when
the detection phase is over it moves onto the decision
phase.
 The decision phase will vary greatly between different
combat NPCs, but generally most combat NPCs can do
two things in this phase. If the NPC is not attacking or
being attacked by another entity, it will patrol some area.
Patrolling involves following a path, wandering randomly
in an area, or moving about the world according to some
algorithm until it finds something it can act on. If the NPC
is attacked by an enemy or detects that an enemy is
nearby, it will decide what action it should take, such as
which item/spell/ability to use, whether it should attack or
retreat, etc. Other unique behavior could also be
implemented in the decision phase as well.

4.2.3. Activate session. This session is only created and
activated when a player clicks on the NPC. The AI in this
session also varies in purpose depending on the NPC it is
attached to. For dialog NPCs, this is where the AI
generates dialog and sends it to the player. For portals,
this is where the AI determines if a player is allowed to
move to another area or which area the portal will move
the player to. For a combat NPC, this is where the AI
decides if the player is performing an attack on it or is
attempting to loot items from a defeated foe.

4.3. Rule structure
While the rules themselves do not have any strictly

enforced structure they must follow, there is only one way
to assign rules to a knowledge agent, or to assign a session
to a NPC. This section discusses how that assignment is
done in the database and how the rules are organized into
different files for maximum re-usability.

4.3.1. Database structure. In order to create rules, two
tables are required in the database: the agent name table
and the file assignment table. The agent name table has
only one column, and contains the names of all valid
agents. The file assignment table has two columns: the file
name and the agent name. When the system starts up, it
gets all the agent names from the agent table, it looks up
all entries in the file assignment table that contain the
same agent name, and creates the agent from all the files
named in those entries. The same file can be assigned to
more than one agent, allowing us to reuse AI rules and
create many new unique behaviors without any extra
work.
 In order to assign rules to a NPC, there are three fields
in the entity database, one for each session, where the
name of the agent that is used for that session is placed. If
a NPC does not use any AI for a session, the value null is
passed in for that session.

4.3.2. Rule organization. Rule organization for
spell/ability/item effects are very simple, they only check
to make sure they have a valid target, and then carry out
the expected consequences of that rule. There is generally
only one spell/ability/item effect per file.
 The dialog rules are equally simple, containing a list of
rules that generate dialog based on various facts.
However, in order for the NPC to form a coherent
sentence, creating an order for some of the rules to be
fired will be necessary. Some common greetings and such
can be placed in separate files for reuse, but generally
every NPC generates different dialog, and this dialog in
contained in a single file for each NPC.
 The organization of the main phase for combat AI
components is more complex. Rules belong to one of two
agenda groups: detection or decision. An agenda group
makes it so that only rules in the group that has focus are
allowed to have their consequences fired. In the main
phase for combat AI, the detection phase starts with the
focus, and then hands the focus to the decision phase
when it is finished. Rules for detection, patrolling, and
battle decisions are kept in separate AI files from each
other to maximize our ability to reuse them.
 While this is how we organized our rules for the
project, this convention is not a requirement in order to
create AI. However, AI that do not follow these
conventions should not be mixed with AI files that do, as
they may not be compatible.

4.4. Fact management

 Every entity contains two hash maps: one named facts
and another named initFacts. When the system first starts,
the initFacts map is populated with facts stored in the
database, such as how much damage the entity can take.

The facts in the initFacts map are also copied into the
facts map. The facts map acts as the working memory for
all the AI sessions that entity contains. The reason we do
this is because if Drools manages its own working
memory then all the facts would have to be reinserted
every update phase in order to populate the agenda. So it
is simpler to manage our own list of facts and directly use
it as the working memory in a stateless session. Whenever
an entity is ready to reappear in the game after being
defeated, all of the contents in the facts map is deleted and
the facts from the initFacts map are copied over again,
resetting it to it’s default state. Whenever an old fact in
the database is updated or a new fact is inserted into the
database, we call a function that makes the database entry
and updates the entities initFacts map as well.
 The fact table has four columns: the fact key, the fact
value, the value type and the entity id. The fact key and
fact value are the pair that are inserted into the fact hash
tables, the value type is a single character that identifies
the type of the fact value (’i’ for integer, ’f’ for float, or ’s’
for string), and the entity id identifies the entity to whom
the fact belongs to.

5. Conclusion

Overall, we found that using Drools was not always
straightforward and had a bit of a learning curve, but was
still moderately easy to use after using it for awhile and
becoming more familiar with it. Coding simple, fairly
intelligent agents that could perform various basic tasks
was not difficult. However, coding more complex and
intelligent agents is still a challenging problem to address.
We have also found that there are many advantages to our
AI design and in using Drools. Drools and our design
gives us the ability to create new AI behavior and modify
existing behavior on-the-fly, and allows us to mix and
match previously created AI components to create new
behavior with little extra effort. Our AI and NPC design
also allows any NPC to be capable of any action; a
treasure box that a player clicks on to collect items is the
same type of NPC that is used for a combat NPC or a
dialog NPC. The only difference between them is the AI
they have been assigned. Even the character that a person
controls is in essence an NPC without a main session
attached to it. Drools and our design also makes it
possible for AI to take control of the player’s character, or
for the player to take control of any NPC. This allows us
to have maximum flexibility when it comes to creating a
multitude of innovative and unique behaviors for NPCs to
have. For instance, a treasure box could ask a riddle the
player must solve in order to open it. If the player answers
correctly, they can take an item out of it, but if answered
incorrectly, it will take control of the player’s character
for a short period of time and force the player to attack his

allies. However, while our use of Drools works well for a
small-scale game, it has yet to be tested on a system with
many users or many NPCs. Further testing on a large-scale
system may prove our solution to be inefficient. Basic AI
functions like combat, quests, items, spells, abilities and
dialogs are essentially complete and are only lacking in
variety. In the near future we hope to expand on these and
add AI to other aspects of the game, such as deciding what
items a merchant NPC has, and how much it sells them for
based on player actions, as well as other factors. In the
future, when all AI aspects have been well developed, we
hope to address the issue of efficiency.

6. References

[1] R. Pilgrim, Tic-tac-toe: introducing expert systems to
middle school students, in SIGCSE ’95: Proceedings of
the Twentysixth SIGCSE Technical Symposium on
Computer Science Education. New York, NY, USA:
ACM, 1995, pp. 340–344.

[2] I. Stewart, Mathematical recreations: Game theory:
Strategies: Dots-and-boxes for experts, j-SCI-AMER, vol.
284, no. 1, pp. 102–103, jan 2001.

[3] J. Schaeffe et al., A world championship caliber
checkers program, Artif. Intell., vol. 53, no. 2-3, pp. 273–
289, 1992.

[4] F. Hsu, M. Campbell and J. Hoane, Deep blue system
overview, in ICS ’95: Proceedings of the 9th international
conference on Supercomputing. New York, NY, USA:
ACM, 1995, pp. 240–244.

[5] J. Laird, It knows what you’re going to do: adding
anticipation to a quakebot, in AGENTS ’01: Proceedings
of the fifth international conference on Autonomous
agents. New York, NY, USA: ACM, 2001, pp. 385–392.

[6] S. Rabin, Introduction to Game Development. Charles
River Media, Inc., 2005.

[7] J. Laird and D. Pottinger, Game ai: The state of the
industry, Part Two, Gamasutra, November 2000
http://www.gamasutra.com/view/feature/3569/.

[8] N. Schulz et al., Horde3d next-generation graphics
engine, http://www.horde3d.org/home.html.

[9] T. K. Software, OGRE, an open source 3d graphics
engine, http://www.ogre3d.org/.

[10] Jboss Enterprise, Drools: Business logic integration
platform, http://www.jboss.org/drools/.

