
VectorForce: A Video Game Project

Mark Chapman, David Turner, Arturo Concepcion, Aldo Lewis

School of Computer Science and Engineering

California State University, San Bernardino

San Bernardino, CA 92407

dirksoul@sbcglobal.net, dturner@csusb.edu, concep@csusb.edu, lockeff6@gmail.com

Abstract
In an era where videogames are beginning to surpass the

film industry's gross product, it was no surprise that

including a game design degree helped to bolster our

own school’s declining computer science enrollment.

However, theories on game design alone did not prepare

students for future employment. It became apparent that

we needed to create an actual game in order to solidify

students’ understanding of game design principles. While

there is a swath of scholarly work on game design theory

and specialized technical areas, there is little work about

how one actually proceeds in creating an entire game,

much less how to structure a curriculum that will actually

allow instructors to teach students to create a game. The

intent of this paper is to provide a discussion of how one

might organize a team of students to create a videogame

and the logistics required for such an undertaking. The

task is accomplished by outlining the creation of

VectorForce, which was published in the Microsoft Xbox

Marketplace on 23 Sep 2009.

Key Words: game curriculum, game design, game

development

1. Introduction

While fears of outsourcing and a devalued hi-tech

American job market drive students to major in non-

computer science professions, a number of university

departments across the country have started to experiment

with using video game creation and design to attract

freshmen students. Some departments use small video

games to outline computational concepts [1, 2, 3, 4, 5].

Such projects demonstrated the fact that students were

interested in creating tangible programs and demonstrative

products rather than abstract computational concepts. In

fact, these researchers found that they were able to attract

students who would otherwise not be interested in a

computer science education. In some cases a game design

program was even more alluring than an in-demand IT

degree. Though the School of Computer Science and

Engineering at CSUSB already offers an IT degree called

the B.A. degree in Computer Systems, the understanding

that computer games appeal to undergraduates prompted

the creation of a game design option within this degree

program.

Designed in the Summer of 2007, VectorForce is an

adaptation of the traditional top-down shooter genre

exemplified by games such as Raiden, Ikaruga, Gradius,

and R-type. Initially dubbed CyberShot, production of

VectorForce began with the leadership of two computer

science faculty members at CSUSB who allowed students

to follow their passion for game design. While the two

faculty members provided their knowledge of

computational concepts and organizational structures, they

handed the creative reins to students. With a small team of

a dozen students, VectorForce gained quick momentum

because it appealed to student interests and allowed them

to learn at their own pace, encouraging them to define

their own stakes in the project.

To make the endeavor even more concrete, we decided

on a development route that would allow us to not only

create the game, but also publish it. Microsoft’s XNA

creator’s club provides independent creators with a well-

documented object-oriented framework that permits the

quick creation of a polished game for PCs and the Xbox

game console. The XNA framework provides an interface

that greatly simplifies the loading and use of art assets

such as 3D models, images, music and sound effects.

Game code under the XNA framework is written in C#,

which is a much easier language to use than C++, the

traditional language used in video game creation. With

XNA, students could focus more attention on learning

general concepts necessary for creating a game without

being bogged down by extensive low-level programming,

while still maintaining a clear goal. The creation of the

game was not just an exercise; it was a project that would

be available to the public through distribution using

Microsoft's Xbox Live Marketplace. The students would

be creating the project for a large audience.

The impetus for designing a real game was carried into

game design classes where students were given the option

to conceptualize their own games and could also see the

development of a more polished product. Thus, classes

such as Game Design and Game Programming dealt

equally with theory and application, which provided

students with a clear connection between the two fields.

The game design class centered on the design process of

game creation including choosing a genre, documentation,

art creation, art loading, and level design. The game

programming class focused on the creation of

programming objects using C#, Lua, OpenGL, XML, etc.,

as well as using any other tools provided by the XNA

framework. Having a working game was vital to teaching

both classes. Of course, the road to a working game was

long and filled with a number of potential detours. The

remainder of the paper focuses on the obstacles we

encountered and the rationale behind our choices.

We specifically outline the path taken until

VectorForce was accepted onto the Xbox Live

Marketplace on September 23rd, 2009—the game may be

found at http://cse.csusb.edu/games/vf. The paper starts

with a discussion of initial game development

considerations such as choosing a game genre and finding

a niche within that genre market, discovering what

resources are available for developing the game, and

researching what tools can enable the creation of the

game. We then elaborate on design considerations that

needed to be revisited after production began. In

particular, reclassifying gameplay elements for more

logical and innovative game mechanics, deciding game

length logistics, and examining art assets to verify art style

cohesion and quality. Finally, no matter how well a game

is designed, there will always be a need for fine-tuning the

finished product. We therefore discuss the internal and

external playtesting phase of our development, where we

polished the game before wide release.

2. Initial game design

When first starting to design a game, several factors

must be considered. A genre must be chosen. With

VectorForce, we determined the genre by considering the

type of gameplay we wanted. We wanted simple, action-

heavy gameplay. We also wanted a game without a lot of

complexity. A gimmick must also be chosen by trying to

determine one or two things the game will do differently

than others in the same genre and market. Finally, we

wanted a game that was simple to pick up and play and

didn't require a large time investment. These three factors

led us towards the Shooter genre with a space setting.

From there, we chose our top-down camera perspective,

which defined our game in the sub-genre “Top-Down

Shooter”. We also had to consider our limitations. We

were working primarily with a student-based development

team and their interests usually dictated what part of the

game they wished to work on. We also had to consider the

tools at our disposal that we could use to craft the game.

2.1 Choosing the gimmick

Because the Shooter genre is a classic genre with an

overabundance of titles, we had to determine how

VectorForce was to distinguish itself. We chose two

gameplay elements to do this. The first was incorporating

two different primary weapons for the player to use. This

idea stemmed from the initial choice of using the Xbox

360 controller to control the game. The controller has two

triggers, and felt we could put them to good use. We

extended from this the idea of using the weapons in

combination with each other to produce interesting

destructive effects that were too powerful to use as

primary weapons and that were more visually impressive

than the primary weapons. From here, we decided upon

three different primary weapons, which could combine

into nine different combo weapons. Figure 1 provides an

example of one of the early combo weapons in action.

Our second gimmick was derived from a multitude of

other games and genre conventions. We termed this our

“Superweapon”. This was a weapon that could be used

when the player had destroyed enough enemies to fill up a

bar meter. When used, the superweapon would help

protect the player and devastate any enemies on the

playing field. We felt that the superweapon would be a

good periodical reward for a player that was performing

well, would help the player escape any tight spots, and

would provide the added boon that giant lasers and

explosions are always a bonus for players.

To add variety to the game, we decided to allow the

player to choose from three ships, each with their own

superweapon. The game was quickly becoming about

choices, so we felt this was a good direction to follow.

Initially, only the superweapon and player model were the

differing factors between player ships. This changed

during later design. The player ships we designed were the

Red Sparrow, the Black Scarab, and the White Hornet.

We gave the Red Sparrow a multi-directional missile

release for its superweapon. The Black Scarab was aptly

named for its buzzsaw shield. The White Hornet was

granted a giant laser that was unrivaled in terms of

destructive power. At the end of the first iteration, these

weapons were not balanced against the enemies that were

in the game. We still felt they were fun, rewarding, and

that the themes fit the game.

2.2 Developing under limitations

VectorForce was a project that was primarily student-

driven, with professors guiding the students in the

technical areas. Because of this, there was a very strong

drive to see the game through to completion and an

unrivaled passion throughout the development process.

There were, of course, drawbacks to using a primarily

student worker base. Student schedules limited the time

they could spend working on the project. The enthusiasm

students generated and the knowledge gained while

working on a game project counterbalanced this, as well

as the fact that students generally possessed a better grasp

of current games from first-hand experience.

2.3 Disciplines

Video game development requires a mix of different

disciplines, such as design, programming, and art. In a

student-driven project, each student will naturally take an

interest in one of these disciplines and will go to great

lengths to learn it. Our approach with VectorForce was to

allow students to determine which area of the project they

wanted to contribute to. In our experience, many students

gravitated towards programming, with fewer students

interested in any type of game design, and only a few

interested in art. Those students who were interested in art

usually had a background in 3D modeling.

2.4 Tools of the trade

VectorForce's graphical assets were built using three

different modeling programs. The models were created

and animated with Autodesk 3D Studio Max, four of

which can be seen in figure 2. Several models were

created by dedicated 3D modeling students, while others

were contributed by amateur modelers in the CSCI 440

(Game Design) class. To texture the models and create the

2D graphical assets, we used Adobe Photoshop and the

GNU Image Manipulation Program GIMP. Again,

students of varying levels of ability created these assets as

they were needed.

To program the game, we used Microsoft's Visual

Studio programming environment. This naturally

interfaced with Microsoft's XNA tools and libraries,

which allowed us to create the game for the Xbox 360.

3. Final game design

As VectorForce grew through the contributions of

students of the game design course and outside students

dedicated to the project, revisions to the initial game

design started and new goals had to be determined.

Around this time, Microsoft had just announced its Indie

Games movement through Xbox Live Arcade. With the

recent news, we determined our final goal: to be published

under the Indie Games label. To accomplish this, we went

back and redesigned several of the weapons, added new

features, determined how many levels we wanted in the

game, and polished the game in preparation for releasing

the game to the public.

3.1 Refining the weapons

In the initial design of VectorForce, many of the

combination weapons created shared similar properties,

such as enemy tracking and projectile type. We decided to

use these properties to define each of the primary

weapons. We determined four different properties, which

were Bullet, Missile, Laser, and Magnet. This increased

our primary weapon count to four and our combination

weapon count to 16. Once we created this design model,

we followed through by matching existing combo

weapons to their primary weapons. We kept the weapons

that fit the new model. The ones that did not were

redesigned to maintain the spirit of the weapon but merge

with the properties of its primary weapons. Finally, we

polished the weapons until they worked effectively and

produced satisfying visual and destructive effects.

Figure 1. A new combination weapon created during

the second iteration of VectorForce

One decision we made early in the gameplay

refinement process was to retain the superweapon’s

thematic similarity with their early counterparts. By

extension, we maintained the player-controlled ship’s

appearance, only retexturing them to be seen more easily

against the black backgrounds of the levels. We increased

the power of the Red Sparrow's missile pod by making it

fire several times in a spiral pattern. We toned down the

Black Scarab's buzzsaw shield by lowering the damage it

could inflict and by shortening its duration. Finally, we

narrowed down the giant laser the White Hornet used, but

allowed it to destroy projectiles, providing the ship with a

small defensive boost when it activated its superweapon.

3.2 Level design

With our new goal of releasing the game, we needed to

determine how long the game was going to be. Games of

the shooter genre are not known for their length, so we

decided that five levels would be appropriate for the

gameplay we were offering and the enemy types we had

created. Each level was designed by hand, with enemies

appearing in “waves”. Waves were a combination of

enemy types with pre-scripted behaviors that appeared at

time intervals in each level. This allowed us to create

complex enemy spawns that could each present the player

with a particular challenge. Finally, to add some replay

value to the game, we created a “Challenge” level. This

level is an infinite level, where the only goal is to earn as

many points as possible and survive for as long as

possible. All enemy waves could be spawned in this level,

in any order and combination, as well as completely

random boss enemy spawns.

Not only did we have to determine what our levels

would look and play like, but we had to estimate how they

would end. We came to the conclusion that we needed to

create five different bosses to end each level, each with

different and unique behaviors. We started this process by

asking our modelers to create large enemies that they

thought were interesting and that had plenty of weaponry.

Each time we received a boss model, we reviewed what it

could possibly do. We then created firing patterns and

chose projectiles that punctuated the boss' uniqueness. To

give an example, we first received the Mohawk, which

eventually became the boss of the second level in the

game. This boss can be seen in figure 4. The model was

wide, with symmetrical armaments consisting of one large

cannon and two smaller cannons. Our designers took this

model and analyzed what types of attacks they could give

it. They experimented with rapid shooting patterns,

asymmetrical movement, and other attack types. They

finally decided on using a back-and-forth movement

pattern, with a constant stream of bullets that tracked the

player with downward laser fire. Intermittently, the boss

would stop firing for a few seconds, then unleash two very

large sustained lasers which could potentially box a player

between them. One final element we added was battle

damage. When the boss endured enough damage, one

cannon was set aflame and its firing pattern changed

slightly. One large laser would not fire, but the other

continued to fire normally. When both cannons were

damaged, the speed of the firing pattern and movement

were increased until the boss was eventually defeated.

Though the development team liked this pattern changing

element, we regret that we were not able to create more

bosses with this element.

3.3 Tools revisited

New goals required new tools to be used and existing

knowledge of previous tools to be refined. Any model

created within 3D Studio Max was scrutinized. Several

models were polished and retextured, with a couple others

being scrapped and recreated. In addition to 3D Studio

Max, one student used IronCAD to create several

impressive enemies.

One piece of the video game puzzle we were missing

in early game design was quality music and sound effects.

One brave student elected to fulfill the task. Using Apple's

Garageband software, he singlehandedly created every

piece of background music in the game. In addition, he

helped provide the sound effects used in the game.

3.4 Documentation

When we proceeded with VectorForce, changes started

happening daily. A weapon's damage or effect would be

altered, enemies would be given a different pattern to

follow, or the way something worked would be changed.

Most, if not all of the changes we made to VectorForce

through the final development period were not properly

documented. This was a mistake.

The original game design document was never updated

to reflect the changes we made during this time. Time was

a big factor in the failure to document the changes we

were making. At the time, we had no method for easily

documenting changes and we did not try to rectify that.

Because changes were happening daily, it would have

been impossible for one person on the team to effectively

gather a list of changes made during that day and

incorporate it into a document. Another factor in the lack

of formal documentation was that no one wanted to do it.

Everyone on the project had other commitments besides

the project. If a hasty change was made, all of us hoped

that an e-mail was sent out detailing the change or the

person at least notified the other team members that a

change had taken place. The final factor in this was lack

of experience in creating game design documentation. We

did not know how some changes should be documented

and that frustrated us.

Instead of formal documentation, we used quickly

created lists of items that needed to be completed. If some

element of the programming needed to be finished, it was

written down on a piece of paper and, usually, it was

addressed by the end of the day. If a game element had to

be redesigned, time would be set aside to discuss it--also

usually done within the span of a day. The final product

resulting from these discussions was, again, a few notes

jotted down on a piece of paper or a whiteboard and sent

to the person who would be performing the changes.

We believe the biggest change in the project that never

received any documentation was the addition of the

Gatling Cannon, a weapon built into the basic controls of

the ship, which could destroy enemy projectiles. The

weapon was conceived and implemented by one person

and the rest of the team was notified after the fact.

Thankfully, this change was not destructive and did

indeed help define the gameplay feel for the second half

of VectorForce's development, but the fact still remains

that it was never fully discussed before implementation

and was never in the original design for the game.

It was also difficult to track assigned tasks. We all had

our general areas of expertise on the game, but many

times, two people would be asked to work on the same

piece of the game without knowing that someone else was

working on the same piece. This lack of organization

created overlap that usually left some work unused. With

proper documentation, this may have not been the case.

It was only by having a small, closely-knit team that

we were able to effectively push forward with

development without much hindrance. Our advice is to

find time for documentation. Find a way for all of the

members on the development team to record their changes

and have it be easily accessible to everyone on the team.

This helps trace completed and continuing assignments,

and how design choices should be implemented.

4. Playtesting

During the late stages of development for

VectorForce, we subjected the game to two types of

playtesting: internal and external. Playtesting is the true

test of separating gamemakers from their product. To do

this, we had to step back and objectively look at each

piece of the game. When we determined areas we needed

to improve, we invested more effort to make it better.

4.1 Internal playtesting

Internal testing consisted of handling bugs and crashes,

as well as gameplay balancing. Here, we tried to break the

game in every way possible. Many times, we succeeded.

Each time a bug or crash was found, we identified what

caused it and subsequently fixed it. Each time a weapon or

enemy malfunctioned, we fixed its behaviors until we

were satisfied with it. Our programming experience lent

itself to finding and fixing conventional programming

bugs, and helped stabilize the game through its many

changes. Our eye for detail helped determine when a

gameplay element was not working as intended.

We also considered and improved gameplay elements

that did not stand the test of multiple playthroughs. Some

weapons were created with too narrow of a scope of

function and had to be expanded and tweaked to make

them more effective. Here, nothing was completely

redesigned. Usually it meant adding more projectiles to a

weapon, changing its rate of fire, changing its damage, or

changing how it acquired targets. Mostly, the work

consisted of balancing the power of the weapon and not

changing the weapons themselves. Another area was

enemy wave design and cohesion. If a particular section of

a level proved to be deadly to everyone playing through it,

we restructured that part of the level. This meant either

going into the waves used in that part of the level and

making them less dense or figuring out a better

combination of waves to use. This was aimed at lessening

the frustration level of the player through changing or

lessening the difficulty of that section of a level. Overall,

our internal testing prepared us for the game's next phase

of testing.

4.2 External (community) testing

As a part of submitting a game to the Xbox Live

Marketplace, an Indie Game must go through a

community review process in which other game

developers download and play the game. In this process,

the reviewers rate for game stability and give feedback on

gameplay.

As mentioned before, we had experience related to

keeping a program stable. What we did not have

experience with was keeping the game stable on the XBox

360 console. During this process, we had to investigate

the 360's architecture in order to solve many issues that

arose during community review. The biggest issue to

tackle was garbage collection. The .NET garbage

collector on the XBox 360 is not as good as the one for

Windows. As a result, the game would frequently stall

during garbage collection phases. We solved the problem

by caching and re-using objects created within each level

of game play. Another problem was the n^2 time

complexity of our collision detection system, which

slowed the frame rate when many projectiles were present

at the same time on the screen. We solved this problem

by re-implementing the collision system using a binary

space partition, thus effectively reducing time complexity

to n * log(n). We also improved the frame rate by

performing collision detection and rendering concurrently

in the separate threads. Another significant problem was

the variety of TV screen sizes and resolutions; we had to

figure out ways for the game to properly display in as

many resolutions as possible.

Other issues we had to tackle concerned difficulty and

balancing. Many times, we received feedback indicating

that the game was too difficult. Sometimes, it was an issue

of player firepower. Other times, enemy formations and

boss behaviors were too difficult to overcome and would

trap a player who was not perfectly prepared. The biggest

issue we faced was the issue of damage indication, both in

terms of enemies taking damage and the player taking

damage. Here, we learned that if a player does not

immediately notice that they are taking damage, they will

not take measures to avoid damage. Additionally, if a

player does not know or feel that the enemies are taking

damage, they will get frustrated with how long it takes to

dispatch an enemy regardless of time spent.

In the end, it took seven submissions for review before

our game was stable enough and technically sound enough

before we were accepted onto the Xbox Live Marketplace.

5. Conclusion

Designing a game is an iterative process that requires

planning and dedication. There is no question that a game

elicits student participation unlike any other task, and that

the creation of one is vital to a meaningful videogame

development curriculum. It allows students to not only see

what tools are available to them, but also how certain

technologies work and how a team is structured in order to

create a final product.

More importantly, implementing a game allows

students not only the pride of accomplishment, but also a

concrete education. Throughout the entire game creation

process, we were able to solidify and test our

understanding of game design. We learned the importance

of choosing a genre and understanding its conventions in

order to determine how to find a niche. It was also

important to analyze what resources were available and

how limitations affected game design. While a large

company with hundreds of employees might be able to

produce any game, a small college collaboration will

usually need creativity in dealing with limited resources.

Luckily, our lack of personnel led us to reach out to other

departments on campus, allowing us to see that there are

other aspects to game design besides programming, such

as adhering to a coherent art design.

Another vital aspect of game design was balancing our

game mechanics after production began. We discovered

that the initial weapon design had evolved as we added

more weapons, so we needed to find a new model to

group the weapons’ functionalities. Though the process

partly taught us how to organize mechanics better from

the beginning, the more important lesson we learned is

that not everything can be planned ahead of time and that

some aspects have to be refined during actual game

implementation. This applied equally to the length of the

game; it was not until we knew how the game played that

we were able to determine how long the levels in the game

should be and what challenges we could provide the

player. We also reached the understanding that we needed

models that were already built before we could start

creating refined and polished products.

Even when we believed we were finished with the

game, we still needed to learn how to deal with

constructive criticism. The game was intended for a wider

audience, so receiving feedback from people with no

stakes in the game was important. The most important

element community feedback can provide is an ongoing

dialogue of effective game design elements. Anyone

planning to build a game may have preconceived notions

of what constitutes a good game, and some ideas about

how to build the ideal game, but it is not until the game is

built that a person can truly tell whether the product they

built correlates to game design ideals.

The creation of a video game is not just a diversion. It

is a means to attract students and explain fundamental

computational concepts to them, and aiming for a

published game can serve as an added incentive.

6. References

[1] Bayliss, J. D. and Bierre, K. 2008. Game design and

development students: who are they?. In Proceedings of

the 3rd international Conference on Game Development in

Computer Science Education (Miami, Florida, February 27

- March 03, 2008). GDCSE '08. ACM, New York, NY, 6-

10.

[2] Bayliss, J. D. and Strout, S. 2006. Games as a "flavor" of

CS1. SIGCSE Bull. 38, 1 (Mar. 2006), 500-504.

[3] Cliburn, D. C. and Miller, S. 2008. Games, stories, or

something more traditional: the types of assignments

college students prefer. In Proceedings of the 39th SIGCSE

Technical Symposium on Computer Science Education

(Portland, OR, USA, March 12 - 15, 2008). SIGCSE '08.

ACM, New York, NY, 138-142.

[4] Rankin, Y., Gooch, A., and Gooch, B. 2008. The impact of

game design on students' interest in CS. In Proceedings of

the 3rd international Conference on Game Development in

Computer Science Education (Miami, Florida, February 27

- March 03, 2008). GDCSE '08. ACM, New York, NY, 31-

35.

[5] Whitehead, J. 2008. Introduction to game design in the

large classroom. In Proceedings of the 3rd international

Conference on Game Development in Computer Science

Education (Miami, Florida, February 27 - March 03,

2008). GDCSE '08. ACM, New York, NY, 61-65.

[6] Whitehead, J. 2008. Introduction to game design in the

large classroom. In Proceedings of the 3rd international

Conference on Game Development in Computer Science

Education (Miami, Florida, February 27 - March 03,

2008). GDCSE '08. ACM, New York, NY, 61-65.

[7] Zagal, J. P., Ladd, A., and Johnson, T. 2009.

Characterizing and understanding game reviews. In

Proceedings of the 4th international Conference on

Foundations of Digital Games (Orlando, Florida, April 26

- 30, 2009). FDG '09. ACM, New York, NY, 215-222.

[8] Zyda, M. 2009. Computer science in the conceptual age.

Commun. ACM 52, 12 (Dec. 2009), 66-72.

