
Lecture 5 Notes

Vectors

The C++ standard library provides a data type template called vector. A vector stores
multiple values of the same data type. Consider this example:

#include <iostream>

#include <string>

#include <vector>

using namespace std;

int main()

{

vector<double> v;

v = { 2.3, 1.0, -420.69, 9001.1, 42.0 };

cout << v[0] << endl <<

v[1] << endl <<

v[2] << endl <<

v[3] << endl <<

v[4] << endl;

}

This example creates a vector, assigns a list of values to it, then displays each value
to the terminal window.

Lets look at each statement one at a time:

1. vector<double> v; declares a variable v which is a double vector. v can hold
any number of elements which are all of type double.

2. v = { 2.3, 1.0, -420.69, 9001.1, 42.0 }; assigns 5 elements to v. The brace-
enclosed list of values is known as an initializer list.

3. The last statement inserts each element to cout on a new line. The subscript
operator, which is a pair of square-brackets, allows us to access an element from a
vector via it’s index. The first element of v is v[0], second element is v[1], ..., and
the last element is v[4]: a total of five elements.

Iterating over a vector

If we wanted to display all the values in a double vector, the ideal way to do it would be
to use a ranged-based for loop. Consider this statement:

for (double e : v) {

cout << e << endl;

}

This is an alternative form of the for statement that iterates over the elements of a
vector. The vector we are iterating through is v and the variable e will contain a copy of
the next element during each iteration.

1



Since e will merely contain a copy of an element, modifying e will not affect an element
stored in v. To modify each element in v, we would need to use a reference:

for (double& r : v) {

r *= 3.0;

}

This statement multiplies each element in v by 3.0. The variable r is a reference to
a double, this means that r will be a reference to the next element in v during each
iteration. Modifying the reference will cause the element to be modified as well.

Dynamically adding elements

A variable that uses the vector template contains special functions that can be used to
read or manipulate it’s elements.

int i;

double n;

vector<double> v;

cout << "Enter 5 numbers: "s;

for (i = 0; i < 5; ++i) {

cin >> n;

v.push_back(n);

}

This snippet of code reads 5 numbers, and appends each of those numbers to v.
Appending an element takes place when we use the push back member function.

Member functions can be accessed using the member-of operator, which is represented
by a dot

Removing previously added elements

The member function pop back() removes the last element of a vector:
If you want to remove all elements, you can use the clear() member function or you

can assign an empty initializer list to the vector.

Getting the number of elements in a vector

The member function size() returns the number of elements in a vector. This is useful
if you’re doing something like calculating the average value:

double sum = 0.0;

double avg;

for (double e : v) {

sum += e;

}

avg = sum / v.size();

2



Using vectors as function parameters

This program contains a function that multiples each value in a vector by a scalar value:

void scale_vector(vector<double>& v, double s)

{

for (double& e : v) {

e *= s;

}

}

int main()

{

vector<double> u = { 2.0, 4.0, 6.0 };

scale_vector(u, 5.0);

for (double e : u) {

cout << e << ’ ’;

}

cout << endl;

}

The program outputs: “10.0, 20.0, 30.0”. The function scale vector has a reference
to a vector as it’s first parameter, so when that function is called, the parameter v will
refer to some vector variable that exists somewhere else in the program.

Since the main function passes vector u as the first argument into scale vector, anytime
scale vector modifies it’s parameter v, the variable u will also be modified.

Now if we have a function that does not modify it’s vector parameter, we can use a
“constant reference” instead:

double vector_average(const vector<double>& v)

{

double sum = 0.0;

for (const double& e : v) {

sum += e;

}

return sum / v.size();

}

This function calculates and returns the average value of it’s vector parameter. Since
v is only read but not modified, we use the keyword “const” to declare that the vector
parameter is constant (not modifiable). We also have to use “const” in our ranged-based
for loop.

It is possible to not use a reference in a vector parameter, in that case: the program
would make a temporary copy of the original vector for the function to work with. Using
vector parameters instead of vector reference parameters is usually bad practice because
it reduces the speed of the program by performing unnecessary copying.

In general, you should use normal parameters for scalar values (char, int, double, etc)
and reference parameters for non-scalar values (vector).

3



Extracting all data from cin

As you know, the cin variable is an istream linked to the program’s standard input. This
usually means, that the input is coming from the computer’s keyboard.

The expression cin >> n or getline(cin, s) when treated as a boolean expression,
returns true when the operation was successful and false when an error occurred or no
more data could be read.

#include <iostream>

#include <string>

using namespace std;

int main()

{

double sum, n;

sum = 0.0;

while (cin >> n) {

sum += n;

}

cout << sum << endl;

}

When you run this program, enter some numbers delimited by spaces and press CTRL-
D to end user input. The program will output the sum of those numbers.

– Mark Swoope

4


